On the norm convergence of non-conventional ergodic averages
نویسندگان
چکیده
منابع مشابه
On the Norm Convergence of Nonconventional Ergodic Averages
We offer a proof of the following nonconventional ergodic theorem: Theorem. If Ti : Z y (X,Σ, μ) for i = 1, 2, . . . , d are commuting probability-preserving Z-actions, (IN )N≥1 is a Følner sequence of subsets of Z, (aN )N≥1 is a base-point sequence in Z and f1, f2, . . . , fd ∈ L∞(μ) then the nonconventional ergodic averages
متن کاملNorm Convergence of Multiple Ergodic Averages for Commuting Transformations
Let T1, . . . , Tl : X → X be commuting measure-preserving transformations on a probability space (X,X , μ). We show that the multiple ergodic averages 1 N PN−1 n=0 f1(T n 1 x) . . . fl(T n l x) are convergent in L2(X,X , μ) as N → ∞ for all f1, . . . , fl ∈ L (X,X , μ); this was previously established for l = 2 by Conze and Lesigne [2] and for general l assuming some additional ergodicity hypo...
متن کاملConvergence of Diagonal Ergodic Averages
The case l = 1 is the mean ergodic theorem, and the result can be viewed as a generalization of that theorem. The l = 2 case was proven by Conze and Lesigne [Conze and Lesigne, 1984], and various special cases for higher l have been shown by Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne [Lesigne, 1993], and Host and Kra [Host and Kra, 2005]. Tao’s argument ...
متن کاملPointwise Convergence of Some Multiple Ergodic Averages
We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...
متن کاملConvergence of weighted polynomial multiple ergodic averages
In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2009
ISSN: 0143-3857,1469-4417
DOI: 10.1017/s014338570900011x